ProPhyC: A Probabilistic Phylogenetic Model for Refining Regulatory Networks

نویسندگان

  • Xiuwei Zhang
  • Bernard M. E. Moret
چکیده

The experimental determination of transcriptional regulatory networks in the laboratory remains difficult and time-consuming, while computational methods to infer these networks provide only modest accuracy. The latter can be attributed in part to the limitations of a single-organism approach. Computational biology has long used comparative and, more generally, evolutionary approaches to extend the reach and accuracy of its analyses. We therefore use an evolutionary approach to the inference of regulatory networks, which enables us to study evolutionary models for these networks as well as to improve the accuracy of inferred networks. We describe ProPhyC, a probabilistic phylogenetic model and associated inference algorithms, designed to improve the inference of regulatory networks for a family of organisms by using known evolutionary relationships among these organisms. ProPhyC can be used with various network evolutionary models and any existing inference method. We demonstrate its applicability with two different network evolutionary models: one that considers only the gains and losses of regulatory connections during evolution, and one that also takes into account the duplications and losses of genes. Extensive experimental results on both biological and synthetic data confirm that our model (through its associated refinement algorithms) yields substantial improvement in the quality of inferred networks over all current methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptional Regulatory Networks across Species: Evolution, Inference, and Refinement

The determination of transcriptional regulatory networks is key to the understanding of biological systems. However, the experimental determination of transcriptional regulatory networks in the laboratory remains difficult and time-consuming, while current computational methods to infer these networks (typically from gene-expression data) achieve only modest accuracy. The latter can be attribut...

متن کامل

Modeling gene regulatory networks: Classical models, optimal perturbation for identification of network

Deep understanding of molecular biology has allowed emergence of new technologies like DNA decryption.  On the other hand, advancements of molecular biology have made manipulation of genetic systems simpler than ever; this promises extraordinary progress in biological, medical and biotechnological applications.  This is not an unrealistic goal since genes which are regulated by gene regulatory ...

متن کامل

The Role of Regulatory in Price Control and Spectrum Allocation to Competing Wireless Access Networks

With the rapid growth of wireless access networks, various providers offer their services using different technologies such as Wi-Fi, Wimax, 3G, 4G and so on. These networks compete for the scarce wireless spectrum. The spectrum is considered to be a scarce resource moderated by the spectrum allocation regulatory (“regulatory” for short) which is the governance body aiming to maximize the socia...

متن کامل

Load-Frequency Control: a GA based Bayesian Networks Multi-agent System

Bayesian Networks (BN) provides a robust probabilistic method of reasoning under uncertainty. They have been successfully applied in a variety of real-world tasks but they have received little attention in the area of load-frequency control (LFC). In practice, LFC systems use proportional-integral controllers. However since these controllers are designed using a linear model, the nonlinearities...

متن کامل

Novel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection

In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011